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Abstract. The method of global geometry optimization of atomic and molecular clusters by evolutionary
algorithms is briefly presented and reviewed. As an exemplary application of a parallelized implementation
of such an algorithm, neutral pure water clusters are globally optimized. In contrast to previous studies, the
sophisticated and quantitatively reliable TTM2-F potential is employed. Significant qualitative differences
to the earlier results are found, implicating a breakdown of simple water models for water clusters of
non-trivial size.

PACS. 02.60.Pn Numerical optimization – 36.40.Mr Spectroscopy and geometrical structure of clusters –
34.20.Gj Intermolecular and atom-molecule potentials and forces

1 Introduction

In the realm of large clusters, many properties can be ex-
trapolated with cluster size [1]. Depending on the observ-
able under study, such smooth extrapolations to smaller
clusters start to fail in the size region of n = 103−107 and
are replaced by seemingly irregular behavior, indicating
that cluster properties start to depend on cluster struc-
ture. Information on inner structure, however, is usually
not directly obtainable from cluster experiments – there-
fore, theory is needed.

Any theoretical treatment of clusters has to deal with
the fact that configuration space increases exponentially
with cluster size, as exemplified by Lennard-Jones (LJ)
clusters [2,3]. For example, the count of local minima in
LJ clusters reaches forbidding numbers very quickly: seri-
ous estimates for only 100 atoms are in the range of 1040.
Clearly, this is a serious problem for any approach, in-
cluding molecular dynamics (MD), even if it is often not
sufficiently appreciated. It also rules out exact global op-
timization methods as an alternative route to low-energy
structures, since such methods have to cover configuration
space completely.

Dropping the aim of exactness, however, leads to prac-
tical global optimization algorithms that yield global and
low-energy local minima with sufficient reliability in prac-
tice. Compared to MD, algorithms of this type offer a com-
plementary, cheaper, and more direct access to experimen-
tally relevant cluster structures. For systems of non-trivial
size, though, even these methods are too expensive to be
performed with sufficiently accurate ab initio treatments
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of the molecular electronic structure. Therefore, semiem-
pirical and empirical approaches to molecular structure
have to be employed; these can then be coupled indirectly
with ab initio treatments [4,5].

2 Global optimization method

We have used the paradigm of evolutionary algorithms
(EA) to create a global cluster geometry optimization
method [6–8], incorporating contributions from other au-
thors [9]. The method has been described in detail in these
articles, and this class of methods has been reviewed re-
cently [10]; therefore we will give only a brief sketch here.

The algorithm is initialized by creating a set of random
cluster geometries, which are then locally optimized. All
possible pairs of clusters are then promoted into a larger,
intermediate set. Within each pair, each cluster is cut in
two parts (not necessarily exact halves), and after swap-
ping one of the parts with the other cluster, two new clus-
ters are formed by re-assembling the parts, replacing the
old clusters. Each cluster in the intermediate set is then
changed further by small random dislocations of a small
subset of its atoms (or molecules), followed by a local op-
timization. The larger, intermediate set is then reduced
to the size of the original set, by an adaptive collection of
rules that discards clusters too close to each other in en-
ergy or in geometry. In a final postprocessing stage, several
attempts are made to improve each cluster geometry fur-
ther, for example by moving the atom (or molecule) with
the smallest contribution to the overall cluster energy to
the best vacancy in the cluster. This postprocessing com-
pletes one iterative cycle. The iteration is continued by
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again forming all possible pairs of clusters, as described
above. The iteration is terminated after a preset maxi-
mum number of steps, or after the best energy found so
far has not improved during a preset number of steps. At
no place in the algorithm, any assumptions about the in-
ner or outer structure of the clusters are made or used.

This algorithm reliably finds all global and low-energy
local minima in various practical applications: at first, the
algorithm was tested for various benchmark systems of
atomic and molecular clusters. In the standard benchmark
case of LJ clusters, all currently accepted global minima
are found at least up to a number of particles n = 150 [7],
including notoriously difficult cases like n = 75, 76, 77,
with a surprisingly low scaling n3 of computational effort
with cluster size. Results of a grid search up to n = 309
using prior information [11] could be improved upon in
several cases, e.g. n = 185, 186, 187 [12]. For neutral wa-
ter clusters using the TIP4P potential [13], the results of
a previous global optimization study [14] could be repro-
duced up to n = 21 [8] and extended to n = 22.

Non-benchmark applications have ranged from DFT
studies on silicon clusters [5] and mixed empirical/ab ini-
tio calculations on mercury clusters [15] to alkali cation
microhydration clusters [16,17]. Structural transition as-
pects of these results have been reviewed recently [18].

As another advantage for larger clusters or more ex-
pensive potentials, this algorithm is embarrassingly paral-
lel: most of the computational time is spent in local opti-
mizations that are entirely independent of each other, and
the amount of communication is very small (only one en-
ergy and one cluster geometry per task). Therefore, in the
present case, we have used a massively parallel machine
with a simple master-slaves model. This ensures automatic
load balancing if the number of processes is significantly
smaller than the number of clusters.

3 Application example: water clusters

3.1 Previous work

Neutral pure clusters of water have been in the focus of in-
terest of experimental and theoretical cluster research [19]
for such a long time that comprehensive coverage of the
literature is not possible here; see references in the works
cited. For smaller clusters (H2O)n, n = 2−10, various se-
ries of experimental studies and theoretical calculations
have largely come to qualitative or even quantitative
agreement [20–22]. The single exception is the notorious
case of the water hexamer [20,23,24] which is still not fully
closed.

For larger clusters, volume and quality of available
data become scarce quickly. There are theoretical predic-
tions of IR spectra in the OH-stretch region, by MP2 cal-
culations with a fairly small basis set [25], for selected
isomers of n = 11, 12. Actual global geometry minimiza-
tions were done up to n = 21, 22 on the simple TIP4P
potential [8,14]. Although the best TIP4P structures for
each cluster size agree qualitatively with the results men-
tioned above for n = 2−10, some doubts remain, bearing

in mind the very simple and likely quantitatively insuf-
ficient form of the TIP4P potential: in particular, these
studies could not detect any appreciable tendency of wa-
ter clusters towards incorporation of water into the in-
side of the structures. Instead, with the single exception
of n = 19, all globally optimal TIP4P clusters from n = 2
to n = 22 have all water molecules at the surface of the
cluster. Cages around central water molecules in the man-
ner of solvation shells seem not to be favored, instead there
is an astonishing tendency towards arrangements of face-
sharing cubes and pentagonal prisms. Furthermore, there
is no discernible growth pattern [8]: the nature of the
global minimum structure changes with each addition of a
water molecule. All this is in stark contrast to chemical in-
tuition, and to related findings, e.g. for hydronium ion [26]
and alkali cation [17] microhydration clusters, where both
more systematic growth and cage closures at n = 16−20
have been found.

3.2 Purpose of present work, water models

In this study, we are putting the global geometry optimiza-
tion work for neutral pure water clusters with the TIP4P
potential to a test, by conducting global optimization on
a totally different, more complicated and quantitatively
more reliable potential, TTM2-F.

In the TIP4P potential [13], water monomers have a
fixed internal structure (hence, there is also no need for
any description of intramolecular forces). Monomers inter-
act with each other solely through pairwise, additive terms
of two types: (1) a LJ term between the oxygen atoms,
summarily modelling dispersion and exchange-repulsion,
and (2) Coulomb terms between fixed partial point charges
on a dummy site and on the hydrogens. This simplicity
makes the model fast to evaluate; therefore, it can and has
been employed in many large-scale MD studies with ex-
plicit water solvent treatments. Nevertheless, and in spite
of the parameters being fit to bulk values, the model cap-
tures the essentials of water-water interactions, since it
shows good performance not only across various solid and
liquid phase properties [13] but also for qualitative struc-
tures of small clusters, as mentioned above.

The TTM2-F potential by Burnham and Xantheas [27]
features non-rigid monomers, with the highly accurate,
empirically adjusted ab initio results by Partridge and
Schwenke [28] as intramolecular potential and intramolec-
ular dipole moment surface. Partial charges and polariz-
abilities of the monomers are “smeared out”, overcoming
divergence problems of more standard multipole schemes.
Many-body effects are incorporated by an iterative eval-
uation of the induction energy over all molecules in the
cluster. All this leads to an increase in computational ef-
fort by a factor of 20, compared to TIP4P, but also to
an impressive accuracy for a wide range of quantities of
clusters, solids, and fluids [27,29], in many cases quantita-
tively agreeing with MP2 results in the complete basis set
(CBS) limit, in particular also for small water clusters.

In spite of the parallel implementation, the compu-
tational expense of the TTM2-F potential allowed only
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Fig. 1. n = 12: (a) parallel vs. (b) alternating homodromy.

Fig. 2. n = 13: (a) central vs. (b) terminal addition.

3 independent runs per cluster size, within our compu-
tational budget. Agreement of the final results enhances
the probability of having found the global minimum with
a stochastic algorithm. In case of disagreements, we per-
formed further runs to arrive again at least at this level of
reliability. Nevertheless, we anticipate that we cannot go
beyond n = 30 within reasonable real time.

3.3 Results

For up to and including n = 11, TIP4P and TTM2-F
global minimum structures agree qualitatively. A first mi-
nor difference appears at n = 12: the two potentials dif-
fer in their preference for two orientational isomers of the
same positional structure (two “fused” cubes, cf. Fig. 1):
the structure can be viewed as a stack of three 4-rings.
Each ring is “homodromic” (all donor OH bonds point in
the same direction around the ring periphery), which at-
taches an orientation to the ring. TIP4P prefers to have
the same orientation in all three rings, whereas TTM2-F
prefers alternating orientations (in Ref. [25], the possibil-
ity of different homodromy isomers for n = 12 was already
noted, but the alternating version was apparently not con-
sidered). Note that the energy differences are exceedingly
small: 0.2 kJ/mol in TIP4P and 0.5 kJ/mol in TTM2-F.
This is well below the accuracy of the models, and even
below the accuracy of the best ab initio treatments. Ac-
tually, these differences likely have no physical relevance.
However, in an abstract sense, within each of these two
models, they are real and reproducible. Hence it is re-
assuring that our global optimization method is able to
detect them, in spite of their smallness.

For n = 13, the first (minor) difference in positional
isomers appears: in both cases, the structures can be
generated from the n = 12 double-cube. In the struc-
ture favored by TIP4P, a water molecule of the central
4-ring is replaced by two molecules, tilted away from
the connection lines between the neighboring molecules.
TTM2-F favors a simple addition of an edge-capping
molecule to one of the terminal 4-rings, Figure 2. While
for TIP4P the energy difference is even less meaningful
than before (0.002 kJ/mol), the TTM2-F energy difference
(4.23 kJ/mol) is still small but not insignificant anymore.

Fig. 3. n = 17: (a) all-surface vs. (b) centered cage.

For n = 14, TIP4P and TTM2-F result in the exact
same global minimum. For n = 15 (stack of two pen-
tagonal prisms) and n = 16 (stack of three cubes), the
positional structure is the same, but as in the case of
n = 12 TIP4P favors parallel homodromy of rings whereas
TTM2-F favors alternating antiparallel homodromy. Up
to this size, all global and low-energy local isomers in
both water models have all molecules at the surface of
the cluster.

The first drastic structural difference occurs for n =
17: TIP4P favors a distorted structure that can loosely be
described as a bent and twisted derivative of the n = 16
straight stack of cubes, with one additional molecule in-
serted at the bend, Figure 3. Although it may not be ap-
parent from the figure at first sight, this structure still has
all molecules at the surface of the cluster. TTM2-F, how-
ever, favors for the first time a cage structure around one
central water molecule. The cage is far from perfect and
devoid of symmetry: it is slightly oblate and consists of
four 4-rings, four 5-rings and two 6-rings. Nevertheless,
the structural difference is significant and not acciden-
tal: the energy difference is 2.07 kJ/mol in TIP4P. It is
4.57 kJ/mol in TTM2-F, and at least one other centered
cage isomer (with three 4-rings, six 5-rings, and one 6-ring)
falls in between the two structures shown in Figure 3.

In the size range n = 18−20, as for n = 14−16, TIP4P
and TTM2-F have global minimum structures that agree
in water molecule positions but differ slightly in prefer-
ence for various orientational isomers. The best n = 19
structure is a water-centered cage in both models, whereas
n = 18 and n = 20 are all-surface (two cubes fused to
a pentagonal prism, and three fused pentagonal prisms,
respectively). Note, however, that various water-centered
cage structures are closer in energy to the all-surface
global minimum within the TTM2-F model than within
the TIP4P model.

For n = 21, there is again a major qualitative differ-
ence in positional isomers: the best TIP4P structure is
again of the cuboid-prismoid variety and quite hard to vi-
sualize (Fig. 4) – but it definitely still has all molecules at
the surface of the cluster. Finding this structure is a big
challenge to global optimization algorithms. They tend to
settle much more easily for the second-best isomer, a fu-
sion of two cubes and two pentagonal prisms, with one
hydrogen bond missing – another all-surface isomer. The
cage structure of TTM2-F is at best the third-lowest iso-
mer in TIP4P, 1.48 kJ/mol higher in energy.

The best TTM2-F structure is again a cage around
one central water molecule. This time, the cage consists
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Fig. 4. n = 21: (a) all-surface vs. (b) centered dodecahedron.

solely of (twelve) 5-rings. Castleman [30] has promoted
perfect dodecahedral cage structures with various inter-
nal molecules and ions as magic cluster structures. As
for other systems [17], the present dodecahedron is not
a perfectly regular one, though: the outer shape is not
quite spherical (principal moments of inertia: 669.0, 687.3,
705.2) and all of the 5-rings are strongly distorted. Fur-
thermore, there are several other centered cage isomers
(with the same and with different 4-, 5-, and 6-ring counts)
and the second-best TIP4P isomer mentioned above be-
tween this pseudo-dodecahedral structure and the all-
surface isomer favored by TIP4P, which is higher in energy
by 7.55 kJ/mol in TTM2-F.

According to our as yet uncompleted calculations for
still larger systems, the case n = 21 seems to be typi-
cal at least for slightly larger clusters: TIP4P continues to
favor all-surface structures consisting of cubes and pentag-
onal prisms, while the best TTM2F structures are water-
centered cages.

4 Conclusions

As demonstrated in references [27,29], TTM2-F structures
and energies for small water clusters can be expected to
be quantitatively close to MP2-CBS results, in contrast
to TIP4P which is at best qualitatively correct. Hence,
where TIP4P and TTM2-F differ for larger clusters, it
is a reasonable assumption that TIP4P is more likely to
be wrong. Therefore, it has to be concluded that TIP4P
seems to fail qualitatively for clusters larger than n = 12.
In particular, it misses the important structural transition
from all-surface to water-centered geometries, occurring in
the size range n = 17−21 within the TTM2-F model.

Clusters as small as these are not good models for bulk
systems (neither liquid or solid), but they are far less re-
moved from them than simple dimers or trimers. In this
sense, this study should caution practitioners using simple
water models against overinterpreting their results with
respect to short-range structural order.

We are currently extending this work towards larger
clusters, checking possible explanations for the struc-
tural differences found, performing comparative DFT and
ab initio calculations to further support the TTM2-F
model for larger clusters, and searching for property sig-
natures that would enable experimental detection of the
all-surface to water-centered transition.

The author thanks Dr. Christian Burnham for supplying var-
ious versions of his TTM2-R and TTM2-F programs prior to
publication. A Cray T3E computer time grant by the high-
performance computing center Stuttgart (HLRS) is gratefully
acknowledged.
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